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1 Introduction

Sentence 1 : Getting rid of cricket is not a game
Sentence 2 : He played the cricket match yesterday

In sentence 1, cricket has a sense of insect while
in sentence 2 cricket has a sense of sport played by
eleven players. Thus for a given word there can be
more than one sense. Words with more than one
senses are called polysemous words while words with
single sense are called monosemous word.
Consider following sentences:

He is standing near the bank of a river.
His bank account details are compromised.

In the first sentence, sense of bank is a sloped
land near a river and in the second sentence, sense
of bank is financial institution. So, depending on
the context, sense of the word changes. Let’s take
another example:

ishwar sab ki paani rakhate hain
ek gilas paani lana
In the first sentence, sense of paani is prestige and in
the second sentence, sense of paani is water. From

above example we can conclude that WSD problem
is not a problem of any single language. Its present
in every language. This task of identifying senses
in a sentence is so simple for human that most of
the time we don’t even realize that we are trying to
disambiguate words in a sentence. But computers
have to process the raw data and convert it into
structured data so that it can derive some semantic
meaning. So, as it is said that what is easy for
humans is difficult for computers and vice versa,
this task of word sense disambiguation is difficult for
computers.

Word sense disambiguation task is defined as deter-
mining the sense of words in computational manner.
This is an AI-complete task, that is, a task whose
solution is at least as hard as the most difficult prob-
lems in artificial intelligence.

1.1 Importance of WSD in NLP

WSD is one of the most fundamental tasks in NLP.
Many applications in NLP directly or indirectly rely
on WSD. Sentiment Analysis, Machine Translation,
Information Retrieval, Text summarization, Text En-
tailment, Semantic Role Labeling are some of the
main applications in NLP which depend on WSD.
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Figure 1: WSD as a heart of NLP

1.2 Formal definition of WSD

Given a piece of text T which contains sequence of
words w1, w2..wn. Disambiguating each word in the
text is all word WSD. Disambiguating a given word
is target WSD.

1.3 Why is WSD an AI-complete
task?

There are many reasons for WSD to be an AI-
complete task:
1.) WSD heavily depends on knowledge soruces
which can be labelled or unlabelled data or some
semantic networks or some machine readable dic-
tionaries. With time new words appear in the
dictionary like google has become synonymous to
searching something on the internet. With the
addition of new words, solving WSD is even more
complex.
2.) fine grained senses vs coarse senses
3.) if text belongs to some domain or it is free text
4.) if set of words to be disambiguated is single or
multiple

1.4 Fundamental Problem of WSD
task

Knowledge Acquisition Bottleneck : Its very
time and money consuming to create a knowledge
resource. And every time disambiguation setup i.e.
domain, language etc changes the knowledge resource
needs to be created again. This is one of the funda-
mental problem of WSD task.

1.5 Main Elements of WSD Task

There are four main elements of Word Sense Disam-
biguation task:

1. Selection of Word Senses : A sense inven-
tory partitions the range of meaning of a word into
its senses. Word senses cannot be easily discretized,
that is, reduced to a finite discrete set of entries, each
encoding a distinct meaning. The main reason for
this difficulty stems from the fact that the language
is inherently subject to change and interpretation.A
sense inventory partitions the range of meaning of a
word into its senses. Word senses cannot be easily
discretized, that is, reduced to a finite discrete set
of entries, each encoding a distinct meaning. The
main reason for this difficulty stems from the fact
that the language is inherently subject to change
and interpretation.

2. External Knowledge Sources : Knowledge
is a fundamental component of WSD. Knowledge
sources provide data which are essential to associate
senses with words. They can vary from corpora
of texts, either unlabeled or annotated with word
senses, to machine-readable dictionaries, thesauri,
glossaries, ontologies, etc.

3. Representation of Context : To convert
unstructured data into structured data so that
computer can analyze it, a preprocessing of the
input text is usually performed which involves steps
discussed in the Figure 2

If we use neural network to perform WSD task
then we may or may not need all these steps. If we
have huge amount of data then these steps are not
necessary for neural network. We just need to feed
word embedding of the words of the sentence and
the task of representation of context will be taken
care of by the network itself.

4. Choice of a Classification Method : We
can choose to use any of the classification methods
like supervised, semi-supervised, unsupervised and
knowledge based. But if we choose supervised then
we need to do corpora labelling with senses. If
we choose unsupervised then we will have lots of
unlabelled data to train on but its accuracy is not
good. If we choose to go with knowledge based
then we again need lots of knowledge resources like
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Figure 2: An example of preprocessing steps of text.

ontologies, thesauries etc.

2 Approaches for Word Sense
Disambiguation

Approaches for solving word sense disambiguation
can be categorized as:

• Supervised approaches : It requires sense tagged
corpora.

• Unsupervised approaches : It does not require
any tagged corpora. Free text is used to deter-
mine the sense of the target word.

• Semi-supervised approaches : It uses limited
amount of sense tagged corpora and at the same
time it uses lots of unlabelled corpora.

• Knowledge based approaches : It uses huge lexi-
cal resources like machine readable dictionaries,
ontologies, thesauries etc to determine the sense
of the target word.

3 Literature Survey

We have done a thorough study of word sense
disambiguation task that involves knowledge based
approaches, supervised approaches, semi-supervised
approaches and unsupervised approaches.

3.1 Lesk’s algorithm : Knowledge
based approach

n this approach, the sense of the target word is
determinedbased on the overlap among its context
and the sense definitions from the machine readable
dictionaries. The sense whose gloss has maximum
number ofwords in common with the context is
assigned to the target word. Each senseof the target
word w gets the score as follows:

score(S) = |context(w) ∩ gloss(S)|

This approach is very sensitive to the exact word-
ing in the sense definitions and hence performed
poorly.

3.2 Unsupervised approaches

We have done study of unsupervised approaches for
WSD that uses Expectation Maximization algorithm
and Markov Random Field and Dependency Parser.

1. WSD using Expectation maximization
algorithm
Resource Requirement for this algorithm

1. In-domain corpora for two different languages.
2. A synset aligned multilingual dictionary.

Synset Aligned Multilingual Dictionary : This is a
type of dictionary where synsets are linked and after
that the words within synsets are linked.
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Example of Synset Aligned Multilingual
Dictionary: Figure 3

Figure 3: An example of a Multilingual Dictionary

Note that each word in Marathi synset has a
corresponding translation word in Hindi synset as
shown in Figure 3.

Intuition behind the EM Algorithm
Let there be two languages L1andL2. For a given
word w in L2, if a particular sense (say S1 ) is more
prevalent in a domain (e.g. Health) then a target
language (L1 ) corpus from the same domain will
have more words which are translations of sense
S1 as compared to words which are translations of
other senses. Once the sense distributions have been
estimated using the EM algorithm, each word in the
test corpus is disambiguated by assigning it the most
frequent sense as learned from the sense distributions.

2. WSD using MRF and Dependency Parser
This method requires Wordnet, a dependency parser
and Stanford POS tagger as knowledge resources.
This algorithm is based on two basic ideas:
Sense dependency : Sense of a word depends on
sense of other words in the sentence, not the words
themselves.
Selective dependency : Sense of a word depends
on sense of only few other words in the sentence, not
all.
Sense dependency example:
Sentence : He is standing near the river bank.
Here word bank has got the sense of sloped land
and not the sense of financial institution to withdraw
money. It is because of the sense of the context word

river. Selective Dependency example :
Sentence : He banks on me that’s why he gave me his
ATM pin and ATM card to withdraw money. Sense
of the word bank which is trust depends on the deep
semantic of the sentence and not on all the words.
Other words like withdraw or money will cause the
word bank to disambiguate as financial institution.
Hence sense of a word does not depend on all the
words of the sentence and sometimes it does not de-
pend on any word but the deep semantic of the sen-
tence.

Authors are finding this dependency using depen-
dency parser

Algorithm
Here we are trying to solve all-word WSD. It is done
by maximizing the joint probability of all the words
senses in the sentence. Finding this joint probability
can be intractable. So dependency parser is used to
simplify the graph.
Algorithm can be divided into two parts :

1.) Construction of Markov Random Field (MRF)
2.) Maximizing the joint probability using MAP

Inference Query
Construction of Markov Random Field: To construct
the MRF we need to find nodes and nodes potentials.
Along with that we also need to find out edges be-
tween nodes and corresponding edge potentials.

Construction of Markov Random Field
How to find nodes and nodes potentials? :
Step 1 : Sentence is fed to Stanford Parts of Speech
Tagger to determine the parts of speech tag for each
word in the sentence.
Step 2 : Nouns, verbs, adjectives and adverbs are
content words. A node is created for each content
word in the input sentence. Words have many
possible meaning. Similarly node will take different
values as senses.
Step 3 : Probability distribution of senses of content
word depicts the node potential of the corresponding
node in the Markov Random Field. Node potential
is determined by the frequency of each sense of each
content word. To calculate frequency, Wordnet is
used.

Determining Edges and Edge Potentials :
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Figure 4: Block diagram of MRF and Link Parser algorithm.

Step 1 : Now the sentence is fed to the Stanford
Dependency parser to find out which words are
linked to other for its sense disambiguation.
Step 2 : Whichever words are linked in the output
of the Stanford Dependency Parser have edges in the
MRF.
Step 3 : Two words which are linked, their proba-
bility of sense co-occurrence is edge potential of MRF.

Maximizing the joint probability using
MAP Inference Query
Let content words of the input sentence
be W = w1, w2, ...wn and their senses be
X = x1, x2, ...xn, respectively. Sense of each
word xi can take ki possible values from the set
Yi = yi1 , yi2 ...yki

, which are all the senses of the
word wi given its POS tag.

Senses are obtained from WordNet.
Example : “Bank is a type of financial organiza-

tion.”
Content words are ‘bank’, ‘is’, ‘type’ and ‘financial’,
’organization’.
So, w1 = Bank, w2 = is, w3 = type, w4 = financial,
w5=organization.
x1 can take two possible values given that it is a
noun
Y1 = y11(slopedland), y21(financialinstitution)

Ψ(xi) : Frequency of occurrence of each sense of a
word is used to calculate the node potential.

Ψ(xi = yai ) ∝ frequency(yai ) + 1∀a

Ψ((xi), (xj)) : Edge Potential of edge between xi

and xj . Co-occurrence of senses of words xi and xj

is used to determine the edge potential.

Ψ(xi = yai , xj = ybj) ∝M(yai , y
b
j)∀a, b

Normalization of node and edge potentials are
done to make it a probability distribution. Joint
probability of senses of words in the sentence is given
by:

Ψ(X) = Ψ(x1, x2, ...xn)

=
∏

xi∈X

Ψ(xi)
∏

(xi,xj)∈E

Ψ(xi, xj)

And the problem is reduced to :

Y Ψ(X = Y )

Reasoning behind the proposed algorithm
Senses of dependent words affect each other. There is
no causal -effect relationship. So, Undirected Graph-
ical Model is used.

Majority of sense dependency is captured in the
syntactic structure of the sentence. Dependency
Parser does this task.
E.g. “There is a bank which is a financial institution
near the river.”
Link parser is used to prevent the sense drift that
could have been caused because of the presence of
the word ’river’
NOTE : Exact inference algorithm (complexity is ex-
ponential to the size of largest clique in triangulated
graph) can be used as size of the graph formed is very
small.
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3.3 Supervised approaches

This approach needs sense labelled corpora. Gen-
erally used sense tagged corpora for training are
SemCor and OMSTI(One Million Sense Tagged
Instances). We will discuss here two neural network
model for the supervised approach.

1. WSD using synset embeddings
Basic principle : 1.) words are sums of their
lexemes and 2.) synsets are sums of their
lexemes.
e.g. the embedding of the word bloom is a sum of
the embeddings of its two lexemes bloom(organ)
and bloom(period); and the embedding of the
synset flower-bloom-blossom(organ) is a sum of
the embeddings of its three lexemes flower(organ),
bloom(organ) and blossom(organ).
Example
Sentence : He is standing near the bank of the
river.
Word embeddings of words in the sentence:
Estand = [s1, s2, s3, s4, s5, s6, s7, s8, s9, s10]
Enear = [n1, n2, n3, n4, n5, n6, n7, n8, n9, n10]
Ebank= [b1, b2, b3, b4, b5, b6, b7, b8, b9, b10]
Eriver = [r1, r2, r3, r4, r5, r6, r7, r8, r9, r10]

Word to be disambiguated : bank
Centroid of the sentence c = (si + ni + bi + ri) for
1 ≤ i ≤ 10

Senses of bank = “financial institution”, “sloping
land”
Synset embeddings of “financial institution” s(1) =
[f1, f2, f3, f4, f5, f6, f7, f8, f9, f10]
Synset embeddings of “sloping land” s(2) = [l1, l2,
l3, l4, l5, l6, l7, l8, l9, l10]

S-cosine feature : ¡cos(c,s(1)), cos(c,s(2))¿

S-product feature : ¡c1s
(1)
1 ..c10s

(1)
10 , c1s

(2)
1 ..c10s

(2)
10 ¿

S-raw feature : ¡c1..c10, s
(1)
1 ..s

(1)
10 , s

(2)
1 ..s

(2)
(10)¿

To test the performance, authors run these features
on IMS (A supervised based WSD system). IMS im-
plements three standard WSD feature sets: part of
speech (POS), surrounding word and local colloca-
tion. They added S-cosine, S-product and S-raw fea-
ture along with standard features in IMS to get 1

percent gain in WSD task accuracy.

2. One Single Deep Bidirectional LSTM
Network for Word Sense Disambiguation of
Text Data
It is a supervised WSD model that leverages a Bidi-
rectional Long Short-Term Memory (BLSTM) net-
work. This network works with sense embeddings,
which are learned during model training, and em-
ploys word embeddings, which are learned through
an unsupervised deep learning approach called GloVe
(Global Vectors for word representation) for the con-
text words. This paper uses the idea of sense-context
cosine similarities in the model.

Model Description
Input to the network

Left context of a word is fed to the left side par of the
BLSTM. One-hot encoding of the context of the tar-
get word is fed to the network which undergoes dot
product with the pre trained GloVe vectors to give
the actual word embedding of the target word con-
text. Cosine similarity of these word embeddings is
measured with sense embedding of the target word.
Initially, sense embedding of target word is initial-
ized randomly and later with backpropagation of er-
ror, network learns the sense embedding of the target
word.

Output of the network
When we train the network, for an instance with
the correct sense and the given context as in-
puts, ŷs is set to be 1.0, and for incorrect senses
they are set to be 0.0. During testing, however,
among all the senses, the output of the network
for a sense that gives the highest value of ŷs will
be considered as the true sense of the ambiguous term

Hidden Layer of the network
The hidden layer hcl is computed as:

hcl = ReLU(Wh.
[
hL
C−1

;hR
C+1

]
+ bh)

[
hL
C−1

;hR
C+1

]
is the concatenated outputs of the right

and left traversing LSTMs of the BLSTM when the
last context components are met. Wh and bh are the
weights and bias for the hidden layer.
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Figure 5: Autoencoder model for generating sysnset embedding as a sum of lexeme embeddings

Figure 6: BLSTM network for the proposed model.

3.4 Semi-supervised approach

LSTM Language Model is trained which predicts a
held-out word in a sentence.
Algorithm

Step1 : Replace the held-out word with a special
symbol $.

Step2 : After LSTM consumes the other words
in the sentence, when EOS token is being consumed,
project the h (=2048) dimensional hidden layer to p
(=512) dimensional context layer. (Word embedding
= 512 dimension)

Step3 : Predict the held-out word by applying
softmax.

Similarity between two context is computed by the

overlap between their bags of predicted words. The
top predictions for the query overlap most with the
LSTM predictions for ‘sense#1′ —we predict that
‘sense#1′ is the correct sense.

This bag of predictions, while easily interpretable,
is just a discrete approximation to the internal state
of the LSTM when predicting the held out word.
Therefore, the LSTM’s context layer from which the
bag of predictions was computed is directly used as a
representation of the context. Given context vectors
extracted from the LSTM, the supervised WSD
algorithms classify a word in a context by finding the
sense vector which has maximum cosine similarity
to the context vector. Sense vector is calculated by
averaging context vectors of all training sentences of
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Figure 7: LSTM: Replace the focus word w3 with a special symbol $ and predict w3 at the end of the
sentence.

Figure 8: Top predictions of ‘stock’ in 5 sentences of different word senses

the same sense.
Semi supervised approach
To overcome drawbacks of supervised algorithm,
paper presents a semi-supervised method which
augments the labeled example sentences with a
large number of unlabeled sentences from the web.
Sense labels are then propagated from the labeled
to the unlabeled sentences. Adding a large number
of unlabeled sentences allows the decision boundary
between different senses to be better approximated.

Label propagation (LP) iteratively computes a
distribution of labels on the graph’s vertices to
minimize a weighted combination of:

1. The discrepancy between seed labels and their
computed labels distributions.

2. The disagreement between the label distribu-
tions of connected vertices.

3. A regularization term which penalizes distri-
butions which differ from the prior (by default, a
uniform distribution).

A graph is constructed for each lemma:
1. Labelled vertices are obtained from the labelled

sentences which has this lemma.
2. Unlabelled vertices are obtained from the

unlabelled sentences from the additional corpus
which has this lemma.
Edge : Vertices for sufficiently similar sentences are
connected by an edge whose weight is the cosine
similarity between the respective context vectors,
using the LSTM language model.
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WSD Task : To classify an occurrence of the
lemma, an additional vertex is created for the new
sentence and run Label Propagation to propagate the
sense labels from the seed vertices to the unlabeled
vertices.

4 Summary

We studied the word sense disambiguation task in
depth which includes understanding the problem as-
sociated with the task. We also did a thorough lit-
erature survey of supervised, semi-supervised, unsu-
pervised and knowledge based algorithm for solving
word sense disambiguation task.
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